Graduate papers
  
Description of the graduate paper
Form of studies Master
Title of the study programm Logistics and Supply Chain Management
Title in original language Pieprasījuma prognozēšana un iepirkšanu plānošana maziem un vidējiem uzņēmumiem
Title in English Demand Forecasting and Purchase Planning for Small and Medium Enterprises
Department Faculty Of Computer Science Information Tehnology And Energy
Scientific advisor Jeļena Pečerska
Reviewer Jūlija Petuhova
Abstract Mazie un vidējie uzņēmumi (MVU) ir vienas no nozarēm, kurām visvairāk nepieciešama prognozēšana. Prognozēšana kļūst aizvien nozīmīgāka vadībā un darbībās, lai sasniegtu savus mērķus un labāku pirkumu plānošanu. MVU patlaban ir grūtības uzturēt nepieciešamo produktu krājumu līmeni, kas var būt saistīts ar neprecīzām pieprasījuma prognozēm. Šīs disertācijas mērķis ir izpētīt pašlaik izmantoto prognozēšanas modeli salīdzinājumā ar citām literatūras apskatā pieejamajām metodēm un atrast veidu, kā uzlabot sadarbību starp iepirkumu nodaļu un pieprasījuma plānošanas nodaļu, lai izveidotu stingru pieprasījumu. plānošanas process. Tiek veikta dažādu metožu salīdzināšana, lai noteiktu uzņēmumam vispiemērotāko metodi, lai sagatavotos nākotnes krājumiem. Šim pētījumam ABC analīze tiek izmantota, lai klasificētu datus trīs kategorijās - A, B un C, lai noteiktu katra vienuma svarīguma pakāpi. Tika apkopoti un prognozēti pieprasījuma dati par deviņiem produktiem trīs gadus pēc kārtas. Analīzē tiek izmantotas septiņas metodes: slīdošā vidējā metode, viena eksponenciāla izlīdzināšana, Holta divu parametru metode, Holta-Ziemas metode, vienas regresijas metode un vairāku regresijas metode. Rezultāti rāda, ka, salīdzinot prognozēšanas precizitātes kļūdu, izmantojot gan WAPE, gan MAPE mērījumus, Ziemas metode ir labākā metode. Turklāt, lai izveidotu uz pieprasījumu balstītu iepirkuma modeli, ir nepieciešami daudzi ieguldījumi. Tomēr gadījumu izpētes ievades līmenis aptver tikai vēsturisko datu aspektu, bet citi aspekti, piemēram, pārdošanas plāns, mārketinga plāns un biznesa plāns, nav integrēti. Tomēr pētnieks piedāvā citu modeļa ievadi, lai palielinātu modeļa precizitāti un uzlabotu departamentu sadarbību, piedāvātā modeļa ievaddatiem pievienojot pirkšanas stratēģiju. Turklāt, analizējot gadījuma izpētes brieduma pakāpi un samazinot turpmāka nepareiza sprieduma risku, lai uzlabotu iepirkumu nodaļas brieduma līmeni, mēs esam identificējuši problēmu piegādātāju atlases procesā un piedāvājam divas dažādas pieejas - kopējās izmaksas. īpašumtiesību (TCO) un analītiskās hierarhijas procesa (AHP). Abas metodes tiek īstenotas divos reālos gadījumos. Abu pieeju rezultāti, kas balstīti uz uzņēmuma vadības atsauksmēm, sasniedza labākus un loģiskākus rezultātus.
Keywords Pieprasījuma prognozēšana, pirkumu plānošana, prognozēšana, laikrindu metodes, cēloņsakarības metodes, kvalitatīvās metodes, kvantitatīvās metodes, krājumu analīze, ABC analīze, precizitātes mērījumi, AHP, TCO.
Keywords in English Demand forecasting, Purchase planning, Forecasting, Time series methods, Causal methods, Qualitative methods, Quantitative methods, Inventory analysis, ABC analysis, Accuracy measures, AHP, TCO.
Language eng
Year 2021
Date and time of uploading 22.10.2021 19:08:42