Noslēguma darbu reģistrs
  
Studiju darba apraksts
Studiju veids bakalaura akadēmiskās studijas
Studiju programmas nosaukums Informācijas tehnoloģija
Nosaukums Ģeneratīvo konkurējošo tīklu analīze un salīdzinājums video satura ģenerēšanā
Nosaukums angļu valodā Analysis and Comparison of Generative Adversarial Networks for the Video Content Generation
Struktūrvienība 33000 Datorzinātnes, informācijas tehnoloģijas un enerģētikas fakultāte
Darba vadītājs Sintija Petroviča-Kļaviņa
Recenzents Oļesja Večerinska
Anotācija This bachelor thesis explores the application of Generative Adversarial Networks (GANs) in video content generation. In recent years, this technology has significantly influenced the development of artificial intelligence, particularly in the creation of synthetic multimedia content. Various GAN architectures are analyzed in the context of video generation, including their advantages and limitations. The core issue addressed in this research is the challenge of generating high-quality, realistic motion, as well as comparing algorithms based on different performance metrics. The aim of the thesis is to develop a comparison methodology and experimentally evaluate the suitability of different GAN models for specific video generation tasks. The work includes a literature review, the design of a comparison approach, and practical experiments using StyleGAN3, DCGAN, and VGAN models. The experimental part covers video data generation, evaluation using FID and IS metrics, and analysis of the obtained results. The conclusion summarizes the most suitable architectures and identifies potential directions for future improvements in video generation. The bachelor's thesis consists of 58 pages, 22 figures, 2 tables, 1 appendix, and 42 references.
Atslēgas vārdi Ģeneratīvie konkurējošie tīkli, video satura ģenerēšana, mākslīgais intelekts, StyleGAN, DCGAN, VGAN.
Atslēgas vārdi angļu valodā Generative Adversarial Networks, video content generation, artificial intelligence, StyleGAN, DCGAN, VGAN.
Valoda lv
Gads 2025
Darba augšupielādes datums un laiks 22.05.2025 10:41:13