Noslēguma darbu reģistrs
  
Studiju darba apraksts
Studiju veids bakalaura akadēmiskās studijas
Studiju programmas nosaukums Datorsistēmas
Nosaukums Normalizācijas funkciju salīdzinājums regresijas uzdevumos, izmantojot dziļo māšīnmācīšanos
Nosaukums angļu valodā Comparison of normalization functions in regression tasks using deep learning
Struktūrvienība 33000 Datorzinātnes, informācijas tehnoloģijas un enerģētikas fakultāte
Darba vadītājs Ēvalds Urtāns
Recenzents Marina Uhanova
Anotācija Normalization is a widely used method in deep learning field. It allows to increase performance of the learning process, performed by neural networks. The bachelor thesis consists of empirical analysis of 3 existing normalization functions. Experiments were performed based on combination of different values of hyperparameters, together with 3 datasets of different size and complexity with respect to features (Weather in Szeged, CalCOFI, Stellar classification). Batch normalization function “LayerNorm” has shown best performance on average among all of the combination of experiments, while function “BatchNormLast” was classified as the most unstable and had lowest performance. The bachelor thesis contains: 59 pages, 34 figures and 26 referenced information sources.
Atslēgas vārdi PADZIĻINĀTA MĀCĪŠANĀS, PARTIJU NORMALIZĀCIJA, REGRESIJA
Atslēgas vārdi angļu valodā DEEP LEARNING, BATCH NORMALIZATION, REGRESSION
Valoda eng
Gads 2022
Darba augšupielādes datums un laiks 29.05.2022 15:52:46