Studiju veids |
bakalaura akadēmiskās studijas |
Studiju programmas nosaukums |
Informācijas tehnoloģija |
Nosaukums |
Dziļas apmācības mākslīgo neironu tīklu lietošana tēlu atpazīšanai ražošanas ciklu gaitā |
Nosaukums angļu valodā |
Use of Deep Learning Artificial Neural Networks for Recognizing Production Cycle Images |
Struktūrvienība |
33000 Datorzinātnes, informācijas tehnoloģijas un enerģētikas fakultāte |
Darba vadītājs |
Jurijs Čižovs |
Recenzents |
Mg. sc. phys. Egmonts Treiguts |
Anotācija |
Bakalaura darba mērķis ir izpētīt TensorFlow izmantošanas iespējas un novērtēt tā efektivitāti tēla atpazīšanas uzdevumā ražošanas uzņēmumā.
Lai sasniegtu izvirzīto mērķi, autors noformulējis piecus galvenos uzdevumus un to risinājumu aprakstījis darba trijās daļās.
Bakalaura darba pirmajā daļā pasniegts teorētiskais materiāls, kas nepieciešams, lai iepazītos ar izmantotajām metodēm un tehnoloģijām.
Otrajā daļā autors apraksta eksperimenta veikšanai nepieciešamās operācijas. Tiek aprakstīti principi, pēc kuriem tiek formēta attēlu datu bāze un skaidrots, kā izmantot TensorFlow darbā.
Trešajā daļā sniegti vairāku eksperimentu apraksti. Eksperimentos tiek pētīts, kā labāk sagatavot fotomateriālus tīkla treniņam, un kā jāveido apmācošo datu izlasi, lai apmācību kļūda būtu pēc iespējas mazāka. Arī tiek pētīts, vai neironu tīkls ir spējīgs atpazīt nedaudz atšķirīgus no izmantotiem apmācība objektus fotogrāfijā, ka āri, vai tīkls spēj klasificēt attēlus ar lielāku objektu skaitu.
Noslēgumā, balstoties uz veikto eksperimentu rezultātiem, autors izdara secinājumus par TensorFlow efektivitāti diplomdarbā uzdevumos un no tā, vērtē TenforFlow izmantošanas lietderību reālajām uzņēmumam.
Darba apjoms - 48 lpp., 14 tabulas, 27 attēli un 0 pielikumi. |
Atslēgas vārdi |
Mākslīgais neironu tīkls, MNT, dziļa apmācība, TensorFlow, CUDA, tēlu atpazīšana, datorredze |
Atslēgas vārdi angļu valodā |
Artificial neural networks, deep learning, TensorFlow, CUDA, image recognition, computer vision |
Valoda |
lv |
Gads |
2018 |
Darba augšupielādes datums un laiks |
04.09.2018 18:08:44 |