Graduate papers
  
Description of the graduate paper
Form of studies Master
Title of the study programm Digital Humanities
Title in original language Dabiskās valodas apstrāde sentimentu analīzē pētot brīvdienu īres vietņu atsauksmes
Title in English The Use of Sentiment Analysis using Natural Language Processing in Vacation Rental Website Reviews
Department Faculty Of Computer Science Information Tehnology And Energy
Scientific advisor Agris Ņikitenko
Reviewer Sintija Petroviča
Abstract Šis maģistra darbs ir veltīts sentimenta analīzes izpētei, izmantojot dabiskās valodas apstrādi, brīvdienu īres vietnes https://www.airbnb.com/ atsauksmēs. Darba autore ir Laura Barkova. Darba mērķis bija izpētīt, cik precīza ir sentimenta analīze, to pielietojot uz brīvdienu īres atsauksmēm, kādi ir galvenie iemesli, kas ietekmē sentimenta analīzes precizitāti un kā rezultātus var interpretēt, lai gūtu labumu pakalpojuma sniedzējam un klientam. Kā arī pielietot divu dažādu veidu modeļus – uz leksiku balstītus modeļus un mašīnmācīšanās modeļus, lai novērtētu, kā tie darbojas uz izvēlētās datu kopas. Mērķa sasniegšanai tika izmantota kombinēta kvantitatīvā un kvalitatīvā pētījuma pieeja. Galvenie rezultāti atklāja, ka sentimenta analīzei jāsastopas ar vairākiem izaicinājumiem – negācijām, daudzvalodību, sarkasma un ironijas noteikšanu. Pielietojot uz leksiku balstītus modeļus, VADER un TextBlob, tika atklāts, ka ļoti liela daļa atsauksmju ir pozitīvas sentimenta atsauksmes, gandrīz 99%. No divām mašīnmācīšanās pieejām, kas tika izmantotas uz izvēlētās datu kopas, SVM algoritms bija nedaudz precīzāks nekā Naive Bayes. Pakalpojumu sniedzēji var analizēt atsauksmes, izmantojot sentimenta analīzi un noteikt, kādas ir konkrētas problēmas pie kā viņiem ir jāpiestrādā, lai uzlabotu savas brīvdienu īres vietas, viņi var salīdzināt tos ar konkurentiem un noteikt galvenās lietas, kuras klienti vērtē visaugstāk. Klienti var iegūt labāku izpratni par to, kurām brīvdienu īres vietām ir visaugstākie reitingi un kas būtu viņiem labākā izvēle. Darbs sastāv no 3 sadaļām, 85 lapaspusēm, 23’521 vārdiem, 65 atsauksmēm un 1 pielikuma.
Keywords sentimenta analīze, dabiskās valodas apstrāde, uz leksikoniem balstīta, mašīnmācīšanās
Keywords in English Sentiment Analysis, Natural Language Processing, lexicon-based, machine learning
Language eng
Year 2023
Date and time of uploading 28.05.2023 12:42:08