Graduate papers
  
Description of the graduate paper
Form of studies Bachelor
Title of the study programm Information Technology
Title in original language Klienta sadarbības potenciāla novērtēšana ar mašīnmācīšanās metodēm
Title in English Evaluation of Customer Cooperation Potential Using Machine Learning Methods
Author Mārcis Āboliņš
Department 12100 Institute of Information Technology
Scientific advisor Sergejs Paršutins
Reviewer Mg. sc. ing. Irīna Provorova
Abstract Darba mērķis: izvērtēt un ar reāliem piemēriem izpētīt vai pēc uzņēmuma raksturlielumiem ir iespējams noteikt kāds ir konkrēta uzņēmuma potenciāls kā klientam uzņēmumam, kurš darbojas informācijas tehnoloģiju nozarē. Darba risinājumi: izmantojot dažādu uzņēmumu, kuri reģistrēti Latvijā, Lietuvā un Igaunijā, raksturlielumus, kuri ir publiski pieejami, ievākta informācija no informācijas tehnoloģijas nozares pārdošanas ekspertiem par viņu vērtējumu, vai pēc šiem publiski pieejamajiem uzņēmumu raksturlielumiem, uzņēmuma potenciāls kā klientam informācijas tehnoloģijas pārdošanas uzņēmumam vērtējams kā zems, vidējs vai augsts. Šo informāciju apkopojot, izveidota apmācību datu kopu, ar kuru tika apmācīti modeļi, kuri izmantoja jau gatavus klasifikācijas algoritmus. Apmācītajam modelim tika iedota informācija par citiem uzņēmumiem, kuriem modelis centās noteikt pie kādas klases pieder šie uzņēmumi. Rezultāti tika analizēti kopā ar informācijas tehnoloģijas pārdošanas ekspertiem, lai noteiktu, vai algoritmu veiktā analīze uzskatāma par izmantojamu vai tomēr ir kāds cilvēcīgais faktors, kuru izmantotie algoritmi nespēj apgūt no dotās apmācību kopas. Iegūtie rezultāti un to novērtējums: apstrādājot uzņēmumu publiski pieejamos raksturlielumus un apmācot modeli, kurš izmantoja izvēlētos algoritmus, netika iegūts vēlamais rezultāts. Modeļa prognozētā uzņēmuma piederība kādai noteiktai klasei nesakrita ar ekspertu vērtējumu. Izmantojot klasifikācijas koka konstruēšanas metodi, tika konstatēts, ka divas no klasēm modelis nosaka salīdzinoši precīzi, bet trešo klasi tikai pusē gadījumu spēj identificēt tā pat kā eksperti. Līdzīgi rezultāti bija arī izmantojot Naivo Baijesa algoritmu, bet atšķirībā no klasifikācijas koka, trešo klasi ar šo algoritmu modelis nav spējīgs noteikt.
Keywords Mašīnmācīšanās, Naivais Baijess, Klasifikācijas koks
Keywords in English Machine learning, Naive Bayes, Clasification tree
Language lv
Year 2019
Date and time of uploading 31.05.2019 12:58:46